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The HIV-1 gp41 N-heptad repeat (NHR) region of the prehairpin
intermediate, which is transiently exposed during HIV-1 viral mem-
brane fusion, is a validated clinical target in humans and is
inhibited by the Food and Drug Administration (FDA)-approved
drug enfuvirtide. However, vaccine candidates targeting the NHR
have yielded only modest neutralization activities in animals; this
inhibition has been largely restricted to tier-1 viruses, which are
most sensitive to neutralization by sera from HIV-1–infected indi-
viduals. Here, we show that the neutralization activity of the well-
characterized NHR-targeting antibody D5 is potentiated >5,000-
fold in TZM-bl cells expressing FcγRI compared with those without,
resulting in neutralization of many tier-2 viruses (which are less
susceptible to neutralization by sera from HIV-1–infected individ-
uals and are the target of current antibody-based vaccine efforts).
Further, antisera from guinea pigs immunized with the NHR-based
vaccine candidate (ccIZN36)3 neutralized tier-2 viruses from multi-
ple clades in an FcγRI-dependent manner. As FcγRI is expressed on
macrophages and dendritic cells, which are present at mucosal
surfaces and are implicated in the early establishment of HIV-1
infection following sexual transmission, these results may be im-
portant in the development of a prophylactic HIV-1 vaccine.
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Membrane fusion between HIV-1 and host cells is mediated
by the viral envelope glycoprotein (Env), a trimer con-

sisting of the gp120 and gp41 subunits. Upon interaction with
cellular receptors, Env undergoes a dramatic conformational
change and forms the prehairpin intermediate (PHI) (1–3), in
which the fusion peptide region at the amino terminus of gp41
inserts into the cell membrane. In the PHI, the N-heptad repeat
(NHR) region of gp41 is exposed and forms a stable, three-
stranded α-helical coiled coil. Subsequently, the PHI resolves
when the NHR and the C-heptad repeat (CHR) regions of gp41
associate to form a trimer-of-hairpins structure that brings the
viral and cell membranes into proximity, facilitating membrane
fusion (Fig. 1).
The NHR region of the PHI is a validated therapeutic target

in humans: the Food and Drug Administration (FDA)-approved
drug enfuvirtide binds the NHR and inhibits viral entry into cells
(4, 5). Various versions of the three-stranded coiled coil formed
by the NHR have been created and used as vaccine candidates in
animals (6–10). The neutralization potencies of these antisera, as
well as those of anti-NHR monoclonal antibodies (mAbs)
(11–15), are modest and mostly limited to HIV-1 isolates that
are highly sensitive to antibody-mediated neutralization [com-
monly referred to as tier-1 viruses (16)]. These results have led to
skepticism about the PHI as a vaccine target.

Earlier studies showed that the neutralization activities of
mAbs that bound another region of gp41, the membrane-
proximal external region (MPER) (Fig. 1), were enhanced as
much as 5,000-fold in cells expressing FcγRI (CD64) (17, 18), an
integral membrane protein that binds the Fc portion of immu-
noglobulin G (IgG) molecules with high (nanomolar) affinity
(19, 20). This effect was not attributed to phagocytosis and oc-
curred when the cells were preincubated with antibody and
washed before adding virus (17, 18). Since the MPER is a par-
tially cryptic epitope that is not fully exposed until after Env
engages with cellular receptors (21, 22), these results suggest that
by binding the Fc region, FcγRI provides a local concentration
advantage for MPER mAbs at the cell surface that enhances
viral neutralization (17, 18). While not expressed on T cells,
FcγRI is expressed on macrophages and dendritic cells (23),
which are present at mucosal surfaces and are implicated in
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sexual HIV-1 transmission and the early establishment of HIV-1
infection (22–34).
Here we investigated whether FcγRI expression also potenti-

ates the neutralizing activity of antibodies targeting the NHR,
since that region, like the MPER, is preferentially exposed
during viral fusion. We found that D5, a well-characterized anti-
NHR mAb (11, 12), inhibits HIV-1 infection ∼5,000-fold more
potently in TZM-bl cells expressing FcγRI (TZM-bl/FcγRI cells)
than in TZM-bl cells that do not. Further, while antisera from
guinea pigs immunized with (ccIZN36)3, an NHR-based vaccine
candidate (7), displayed weak neutralizing activity in TZM-bl
cells, they exhibited enhanced neutralization in TZM-bl/FcγRI
cells, including against some tier-2 HIV-1 isolates that are more
resistant to antibody-mediated neutralization (16) and that serve
as benchmarks for antibody-based vaccine efforts. These results
indicate that FcγRI can play an important role in neutralization
by antibodies that target the PHI. Since these receptors are
expressed on cells prevalent at mucosal surfaces thought to be
important for sexual HIV-1 transmission, our results motivate
vaccine strategies that harness this potentiating effect.

Results
D5, a mAb shown by X-ray crystallography to bind a highly
conserved epitope on the NHR (12), has weak but relatively
broad neutralizing activity against HIV-1 strains (11). We mea-
sured the neutralizing activity of D5 against HXB2 (a clade B
tier-1 virus) in both TZM-bl and TZM-bl/FcγRI cells. The
presence of FcγRI increased the neutralization potency of D5
IgG by ∼5,000-fold (Fig. 2A). In contrast, this effect was not
observed with the Fab fragment of D5 (Fig. 2A), indicating that
this phenomenon is Fc-dependent. When tested in TZM-bl cells
expressing FcγRIIa, FcγRIIb, or FcγRIIIa, only modest poten-
tiation of D5 IgG neutralizing activity was observed (Fig. 2B).
These results were obtained using media containing 10% fetal
bovine serum; the interaction of bovine IgG with human FcγRII
(35) may have interfered with our ability to detect a larger effect
with FcγRIIa and FcγRIIb. With this caveat, the pronounced
enhancement of D5 IgG neutralization was specific to FcγRI.
D5 weakly inhibits a diverse range of HIV-1 viruses across

clades, as expected given the high (>95%) conservation of

residues that form the D5 epitope on the NHR (11, 12). Given
the increase in potency afforded by FcγRI, we investigated the
neutralization by D5 in a wide panel of HIV-1–pseudotyped
viruses (36) in TZM-bl/FcγRI cells. At concentrations up to
25 μg/mL, D5 failed to neutralize viruses in the panel when
measured in TZM-bl cells not expressing FcγRI (Table 1).
However, when measured across the same concentration range
in TZM-bl/FcγRI cells, D5 inhibited eight of the nine tier-2
viruses in the panel, spanning five clades (Table 1).
Consistent with earlier studies (17), addition of normal human

serum to the neutralization assay diminished the potentiation of
D5 neutralizing activity in TZM-bl/FcγRI cells (Fig. 3). This
decrease in neutralization was dependent on the concentration
of added human serum (Fig. 3), as expected if serum IgG com-
petes for binding to FcγRI and thereby reduces the potentiation
of D5 neutralizing activity. Because D5 has such high potency in
TZM-bl/FcγRI cells (50% inhibitory dose [ID50] < 0.01 μg/mL;
Fig. 2A), it is not surprising that 0.5% human serum (∼50 μg/mL
IgG) greatly diminishes the observed potentiation (Fig. 3).
However, in a vaccine setting, a substantial fraction (∼1 to
∼10%) of serum immunoglobulin can be antigen-specific
(37–40). Indeed, antisera from guinea pigs immunized with the
NHR-based vaccine candidate (ccIZN36)3, which had weak or
no neutralizing activity in TZM-bl cells, neutralized tier-2 viruses
from multiple clades when tested in TZM-bl/FcγRI cells (Fig. 4).
These data demonstrate that even in the presence of
non–vaccine-elicited serum IgG, vaccine-elicited antibodies
against the NHR have enhanced FcγRI-dependent neutraliza-
tion.

Discussion
Here we have established that D5, a mAb targeting the NHR
region of the PHI, is ∼5,000-fold more potent at preventing
HIV-1 infection in FcγRI-expressing cells than in cells that do
not express this receptor. This potentiation was found to be
specific to FcγRI, and was not observed with equimolar con-
centrations of D5 Fab (Fig. 2), providing strong evidence that
potentiation was the result of Fc-dependent interaction of D5
IgG with FcγRI. We have also shown that antisera against the
NHR of the HIV-1 PHI elicited with a vaccine candidate have
substantially enhanced neutralization activity in cells expressing
FcγRI. In particular, antisera from guinea pigs immunized with
(ccIZN36)3 exhibited FcγRI-dependent cross-clade neutraliza-
tion of a diverse panel of tier-2 viruses (Fig. 4).
Earlier studies reported a similar effect with MPER-binding

mAbs, including 2F5 and 4E10 (17, 18), but not with mAbs that
target other HIV-1 epitopes. Importantly, these studies also
demonstrated that this enhancement occurred when cells were
preincubated with antibody and washed before virus was added.
As in this work, only slight potentiation was observed for the
MPER-binding mAbs in the presence of the other FcγRs tested
(IIa, IIb, IIIa).
In contrast to the other, low-affinity FcγRs which generally

bind IgG in the form of immune complexes, human FcγRI is able
to bind monomeric IgG with KD ∼15 nM (19, 20). As the con-
centration of IgG in serum is ∼70 μM (∼10 mg/mL), FcγRI re-
ceptors will be fully occupied with IgG, and over 1% can be
expected to be antigen-specific following vaccination (37–40).
Given that human classical monocytes (precursors of most den-
dritic cells and macrophages) express ∼70,000 FcγRIs per cell
(41), each cell would have over 700 FcγRIs occupied with
antigen-specific antibodies. Moreover, both FcγRI (42) and CD4
(43, 44) are preferentially localized to lipid rafts, substantially
increasing the likelihood that FcγRI is in close proximity to gp41
during viral fusion.
Taken together, these results support a model for potentiation

(Fig. 5) in which prepositioning of antibodies by FcγRI at cell
surfaces increases the local concentration of antibodies and

Fig. 1. HIV-1 membrane fusion. The surface protein of the HIV-1 envelope is
composed of the gp120 and gp41 subunits. After Env binds to cell-surface
receptors, gp41 inserts into the host cell membrane and undergoes a con-
formational change to form the prehairpin intermediate. The N-heptad re-
peat (orange) region of gp41 is exposed in the PHI and forms a three-
stranded coiled coil. To complete viral fusion, the PHI resolves to a
trimer-of-hairpins structure in which the C-heptad repeat (blue) adopts a
helical conformation and binds the NHR region. Fusion inhibitors such as
enfuvirtide bind the NHR, preventing viral fusion by inhibiting formation of
the trimer of hairpins (1–3). The membrane-proximal external region (red) is
located adjacent to the transmembrane (TM) region of gp41.
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thereby enhances neutralization (17, 18) (see also ref. 45). Such a
mechanism would be expected to impact HIV-1 antibodies that
target epitopes on Env that are only exposed after engagement
with cellular receptors, such as the MPER or the NHR. Since
other viruses that utilize type-I fusion proteins appear to proceed
through a PHI during cell entry (2, 3), potentiation of anti-PHI
antibodies against other viruses can also be expected.

The relevance of these findings to potential protection from
HIV-1 infection is not yet clear. Although FcγRI is not normally
expressed on CD4+ T cells, studies of nonhuman primates 24 to
48 h following intravaginal simian immunodeficiency virus (SIV)
inoculation demonstrate infection of a substantial number of
dendritic cells and macrophages, that often express FcγRI, in
addition to T lymphocytes (32–34, 46). Studies using an SIV-
based dual-reporter system find that 48 h after vaginal

B

A

Fig. 2. Neutralization potency of the anti-NHR antibody D5 is enhanced by FcγRI. (A) Inhibition of infection by viruses pseudotyped with Env from HXB2 (tier-
1, clade B) by D5 IgG (Left) and D5 Fab (Right) in TZM-bl cells not expressing (solid) or expressing (open) FcγRI. Potentiation of >5,000-fold occurs in TZM-bl/
FcγRI cells for the IgG but not the Fab form of D5. Curves plotted are from a single experiment; error bars are the range of n = 2 measurements. The table
shows ID50 mean values and SEM from duplicate experiments. (B) ID50 values (in μg/mL) and neutralization curves of D5 IgG inhibiting infection of Env-
pseudotyped lentivirus (HXB2) in TZM-bl cells stably expressing various Fcγ receptors. Each point is the mean value of a triplicate measurement; error bars are
the SEM from n = 3 values. Comparable results were obtained with Env from the tier-2 HIV-1 isolate 25710 (67).

Table 1. D5 IgG neutralizes tier-1 and tier-2 viruses across clades in TZM-bl/FcγRI cells
Virus Tier Clade ID50 in TZM-bl cells, μg/mL ID50 in TZM-bl/FcγRI cells, μg/mL

SVA-MLV Negative control >25 >25
X2278 Tier 1B Clade B >25 0.53
246-F3 Tier 2 Clade AC >25 >25
CNE55 Tier 2 CRF01_AE >25 0.88
TRO.11 Tier 2 Clade B >25 4.8
BJOX2000 Tier 2 CRF07_BC >25 0.53
CH119 Tier 2 CRF07_BC >25 1.8
Ce1176 Tier 2 Clade C >25 7.0
25710 Tier 2 Clade C >25 0.36
Ce0217 Tier 2 Clade C >25 0.43
X1632 Tier 2 Clade G >25 0.71

Viruses were pseudotyped with Env from various HIV-1 strains. ID50 was determined using a validated neu-
tralization assay (63–66). SVA-MLV is lentivirus pseudotyped with murine leukemia virus (MLV) envelope to
detect nonspecific inhibition.

Montefiori et al. PNAS | 3 of 6
The high-affinity immunoglobulin receptor FcγRI potentiates HIV-1 neutralization via
antibodies against the gp41 N-heptad repeat

https://doi.org/10.1073/pnas.2018027118

M
ED

IC
A
L
SC

IE
N
CE

S

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372



inoculation, while the majority of infected cells are T cells, 25%
are dendritic cells or macrophages (47, 48). The relevance of
these reports to the question of which cells are first infected
following atraumatic vaginal inoculation is complicated by the

ability of SIV to enter the vaginal mucosa within 60 min of ex-
posure, such that by 48 h, viral replication will have occurred and
infected cells will include many more than those directly infected
by the inoculum (33, 48).
While there is not yet consensus in the field regarding which

cell types are first infected by HIV-1 in the early minutes
to hours of transmission, it is clear that T cells, dendritic cells,
and macrophages are all infected in substantial numbers (34).
Importantly, HIV-1–infected dendritic cells and macrophages
(24–27), both of which express FcγRI, can transmit virus to
CD4+ T cells (28–31). In addition, dendritic cells extend den-
drites to the luminal surface of the vaginal mucosa where they
could be infected directly, and the migration of HIV-1–positive
dendritic cells from the initial site of infection to lymph nodes
results in dissemination of virus to large numbers of CD4+
T cells (34, 49, 50). Thus, the enhanced protection of FcγRI-
expressing cells such as dendritic cells and macrophages by an-
tibodies that target the PHI might decrease the likelihood of
HIV-1 transmission, particularly during atraumatic vaginal in-
fection (see also refs. 17, 18, and 51).
Previous studies of nonhuman primates support the notion

that FcγRI may have an important role in protection provided by
MPER antibodies against simian-HIV (SHIV) challenge. First,
in a vaginal challenge with SHIV-BaL in rhesus macaques, dose-
dependent protection was observed for an MPER mAb (2F5)
when it was administered as an IgG but not when dosed in Fab
form, despite higher vaginal Fab levels at the time of challenge
(52). This result likely implicates an Fc-dependent mechanism,
although the possibility that it is related to the valency difference
between the IgG and the Fab cannot be ruled out. Second, in a
comprehensive meta-analysis of numerous passive immunization
studies showing that serum-neutralization antibody titers asso-
ciate with protection against SHIV challenge, mAbs targeting

Fig. 3. Addition of normal human serum to infection assays diminishes the
potentiation of D5 neutralization activity by FcγRI. Values of ID50 for D5 IgG
(nM) against viruses pseudotyped with Env from two HIV-1 strains (HXB2 and
25710) measured in the presence of 0.005 to 0.5% added human serum.
Values above the limit of quantitation for this assay (5 nM) are indicated
with arrowheads. ID50 values were obtained from nonconstrained fits of
four- and five-point dilution curves, where the neutralization value at each
dilution was measured in duplicate.

A B

Fig. 4. Antisera from guinea pigs immunized with an NHR-based vaccine candidate, (ccIZN36)3, neutralize multiple tier-2 HIV-1 strains in TZM-bl/FcγRI cells.
(A) (ccIZN36)3 contains 36 residues from the NHR region of gp41 (HXB2) and is stabilized by disulfide bonds and a coiled-coil domain (7). (B) ID50 titers (serum
dilution) were determined for antisera against viruses pseudotyped with Env from various HIV-1 strains measured in TZM-bl cells not expressing (Top; closed)
or expressing (Bottom; open) FcγRI using a validated neutralization assay (63–66). V570A is a mutant of the HXB2 strain that is more sensitive to antibodies
that target the PHI (7), and P.I. denotes preimmune antisera tested against this strain. Preimmune antiserum from each animal was tested against all viruses
and did not have detectable neutralization in any of the strains (ID50 titers were below the limit of quantitation, which was 100 for TZM-bl/FcγRI assays with
V570A antisera and 10 for all others). Each data point represents the ID50 value of antiserum from a single guinea pig after a prime and two boosts with
(ccIZN36)3.
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the MPER were a highly significant outlier compared with other
neutralizing mAbs, with much greater potency than would be
predicted from serum-neutralization titers measured in cell cul-
ture (53) (see also refs. 54 and 55).
Our finding that anti-PHI antibodies are potentiated by FcγRI

in vitro motivates efforts to investigate anti-PHI antibodies
in vivo, especially in the context of studies that suggest potential
Fc-dependent protection against infection by anti-MPER anti-
bodies in nonhuman primates. In particular, passive transfer
experiments using anti-PHI antibodies in nonhuman primate
mucosal challenge studies could reveal whether FcγRI-mediated
potentiation of anti-PHI antibodies impacts protection from
HIV-1 infection. Such results would contribute to our under-
standing of Fc-mediated correlates of protection against HIV-1
transmission and may have important implications for HIV-1
vaccine development.

Materials and Methods
Antibody Expression and Purification. D5 IgG and Fab were produced in
Expi293F cells. Constructs were cloned using In-Fusion HD Cloning Kit Master
Mix (Clontech); the heavy- and light-chain regions were cloned into the
CMV/R plasmid backbone for expression under a cytomegalovirus (CMV)
promoter. This vector includes the HVM06_Mouse (P01750) Ig heavy-chain V
region 102 signal peptide to induce protein secretion and to enable purifi-
cation from the supernatant. These plasmids were transfected into Expi293F

cells at 3 × 106 cells per milliliter with FectoPRO (Polyplus), with the antibody
heavy- and light-chain plasmids cotransfected at a 1:1 ratio. Cell cultures
were incubated at 37 °C and 8% CO2 with shaking at 120 rpm on a MaxQ
2000 CO2-resistant digital shaker (Thermo Fisher Scientific). Cells were har-
vested 3 d post transfection by spinning at 4,000 × g for 15 min and filtered
through a 0.22-μm filter. IgG-containing supernatants were diluted 1:1 with
1× phosphate-buffered saline (pH 7.4) and batch-bound to Pierce protein A
agarose (Thermo Fisher Scientific) overnight at 4 °C. The supernatant/resin
slurry was added to a column and the resin was washed with 1× phosphate-
buffered saline (pH 7.4) and eluted with 100 mM glycine (pH 2.8) into 1/10
volume of 1 M Tris (pH 8.0). Similarly, Fab-containing supernatants were
diluted 1:1 with 50 mM sodium acetate (pH 5.0), batch-bound to Pierce
protein G agarose (Thermo Fisher Scientific) overnight at 4 °C, washed with
50 mM sodium acetate (pH 5.0), and eluted with 100 mM glycine (pH 2.8)
into 1/10 volume of 1 M Tris (pH 8.0).

Viral Neutralization Assay. Neutralizing antibody activity of monoclonal an-
tibodies and serum samples was measured in 96-well culture plates using Tat-
regulated luciferase reporter gene expression to quantify reductions in virus
infection in TZM-bl and TZM-bl/FcγRI cells. TZM-bl cells were obtained from
the NIH AIDS Research and Reference Reagent Program, as contributed by
John Kappes and Xiaoyun Wu (56–60). TZM-bl cells transduced to stably
express FcγRI, TZM-bl/FcγRI (17, 18), were also used as target cells in the
neutralization assays. Neutralization assays were performed using well-
established Env-pseudotyped lentiviral reference strains (16, 36, 61, 62) in
TZM-bl and TZM-bl/FcγRI cells essentially as previously described (63). Serum
samples were heat-inactivated at 56 °C for 1 h, and then diluted over a range
of 1:20 to 1:43,740 in cell-culture medium and preincubated with virus
(∼150,000 relative luminescence units [RLUs]) for 1 h at 37 °C before addition
of cells. Experiments with D5 IgG reported in Table 1 included the 1-h 37 °C
incubation, while those in Figs. 2 and 3 did not. After incubation for 48 h,
cells were lysed and luciferase activity was determined using a microtiter
plate luminometer and BriteLite Plus Reagent (PerkinElmer). Neutralization
titers were defined as the sample dilution at which RLUs were reduced by
50% compared with RLUs in virus control wells after subtraction of back-
ground RLUs in cell control wells. This assay was previously optimized and
validated (63, 64) and was conducted in compliance with good clinical lab-
oratory procedures (65), including participation in a formal TZM-bl assay
proficiency program for Good Clinical Laboratory Practice-compliant
laboratories (66).

(ccIZN36)3 Immunizations. (ccIZN36)3 was produced as previously described
(7). Seven female Hartley guinea pigs from Charles River were immunized
intramuscularly with (ccIZN36)3 at 0, 4, and 8 wk. For each immunization, a
total volume of 400 μL containing 100 μg (ccIZN36)3, 180 μg aluminum
hydroxyphosphate sulfate, and 40 μg Iscomatrix (CSL Biotherapies) was
evenly divided between two injection sites. Serum was collected 8 wk before
the first immunization and 3 wk after each boost. Animal work was per-
formed in accordance with the Merck Research Laboratories Institutional
Animal Care and Use Committee 8119974780067.

Data Availability. All study data are included in the article.
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